Course Type	Course Code	Name of Course	L	T	P	Cre dit
D E	NMCD524	Representation Theory of Finite 3 Groups		0	0	3

Prerequisite

Group Theory and Linear Algebra

Course Objective

- To represent abstract algebraic objects like groups as subobjects of matrix groups and study linear representations of finite groups.
- To classify all the irreducible representations of a finite group, up to isomorphism.

Learning Outcomes

- Representation theory is used in many parts of mathematics, as well as in quantum physics. After the course the students will be able to understand that.
- The students will be able to use tools from linear algebra to solve abstract algebraic problems.

Uni t No.	Topics to be Covered	Cont act Hou rs	Learning Outcome
1	Revision of basic group theory, Representations, Subrepresentations, Sum and tensor product of representations, Symmetric and Alternating Squares representations, Irreducible representations	9	This unit will help students to represent abstract algebraic objects like groups as subobjects of matrix groups and learn their properties.
2	Characters, Schur's lemma, Maschke's theorem, Orthogonality relations, Decomposition of regular representation, Number of irreducible representations, canonical decomposition and explicit decompositions.	1 0	Students will learn the basic idea of characters and irreducible representations
3	Representation of subgroups and Product groups, Induced representations. Examples of Representations for Cyclic groups, dihedral group, alternating and symmetric groups	11	This unit will help students to understand the representation of subgroups and product groups and to classify all representations of cyclic and symmetric groups.
4	Integrality properties of characters, Burnside's paqb theorem. The character of induced representation, Frobenius Reciprocity Theorem, Restriction to subgroups, Meckey's irreducibility criterion, Examples of induced representations, Representations of supersolvable groups.	1 2	Students will be able undertand irreducibility criterion and different applications of representation theory.
	Total		

Text Books:

1. J. P. Serre, Linear Representation of Finite Groups, Springer-Verlag, 1977.

Reference Books:

- 1. M. Burrow, Representation Theory of Finite Groups, Dover Publications, 2011.
- 2. N. Jacobson, Basic Algebra 2nd Edition, Dover Publications, 2009.
- 3. S. Lang, Algebra, 3rd Edition, Springer, 2005.