| Course
Type | Course
Code | Name of Course | L | T | P | Cre
dit | |----------------|----------------|--|---|---|---|------------| | D
E | NMCD524 | Representation Theory of Finite 3 Groups | | 0 | 0 | 3 | ### Prerequisite Group Theory and Linear Algebra ## **Course Objective** - To represent abstract algebraic objects like groups as subobjects of matrix groups and study linear representations of finite groups. - To classify all the irreducible representations of a finite group, up to isomorphism. # **Learning Outcomes** - Representation theory is used in many parts of mathematics, as well as in quantum physics. After the course the students will be able to understand that. - The students will be able to use tools from linear algebra to solve abstract algebraic problems. | Uni
t
No. | Topics to be Covered | Cont
act
Hou
rs | Learning Outcome | |-----------------|---|--------------------------|---| | 1 | Revision of basic group theory,
Representations, Subrepresentations, Sum
and tensor product of representations,
Symmetric and Alternating Squares
representations, Irreducible representations | 9 | This unit will help students to represent abstract algebraic objects like groups as subobjects of matrix groups and learn their properties. | | 2 | Characters, Schur's lemma, Maschke's theorem, Orthogonality relations, Decomposition of regular representation, Number of irreducible representations, canonical decomposition and explicit decompositions. | 1 0 | Students will learn the basic idea of characters and irreducible representations | | 3 | Representation of subgroups and Product groups, Induced representations. Examples of Representations for Cyclic groups, dihedral group, alternating and symmetric groups | 11 | This unit will help students to understand the representation of subgroups and product groups and to classify all representations of cyclic and symmetric groups. | | 4 | Integrality properties of characters, Burnside's paqb theorem. The character of induced representation, Frobenius Reciprocity Theorem, Restriction to subgroups, Meckey's irreducibility criterion, Examples of induced representations, Representations of supersolvable groups. | 1 2 | Students will be able undertand irreducibility criterion and different applications of representation theory. | | | Total | | | #### **Text Books:** 1. J. P. Serre, Linear Representation of Finite Groups, Springer-Verlag, 1977. # Reference Books: - 1. M. Burrow, Representation Theory of Finite Groups, Dover Publications, 2011. - 2. N. Jacobson, Basic Algebra 2nd Edition, Dover Publications, 2009. - 3. S. Lang, Algebra, 3rd Edition, Springer, 2005.